

# His-Tag 蛋白纯化试剂盒(磁珠法)

### 产品描述

Biolinkedin<sup>®</sup> His-Tag 蛋白纯化试剂盒是由 His 蛋白纯化琼脂糖磁珠,经过优化预制的缓冲液以及 50mL 的磁力架组成,用于纯化各种表达系统融合表达的 His 重组蛋白。

### 产品组成

| His 蛋白纯化琼脂糖磁珠                             | 10mL (20% V/V) |
|-------------------------------------------|----------------|
| 结合/平衡缓冲液                                  | 100 mL         |
| 洗涤液                                       | 100 mL         |
| 洗脱缓冲液                                     | 100 mL         |
| 蛋白快速染色液                                   | 50 mL          |
| SDS-PAGE Sample 10 mL Loading buffer (5×) |                |
| 磁力架                                       | 50mL 双排四孔      |

#### 纯化步骤

#### 1.样品准备

#### 以大肠杆菌表达系统为例

- 1). 4℃离心 30 min (4000 g) 收集菌体, 弃上清。
- 2). 用冷**结合/平衡缓冲液**重悬细胞,如果需要,可加入适量的抑制剂,如蛋白酶抑制剂 (PMSF)或其他蛋白酶抑制剂等。

注意:加入的抑制剂不能对 His 蛋白纯化琼脂糖磁珠的性能有影响,破碎液中不能含有 EDTA、EGTA 等螯合剂,DTT、巯基乙醇等还原剂,尿素、盐酸胍等变性剂。

- 3). 用超声波破碎法在冰上破碎菌体,直到样品破碎完全。**可选:** 如果裂解物太粘稠,可以加入 RNase A (终浓度 10 μg/mL) 和 DNase I (终浓度 5 μg/mL) 并在冰上孵育 10-15 min。
- 4) 4°C离心20 min(12,000 g),除菌过滤,并小心将上清和沉淀分离。
- 5). 用SDS-PAGE 分析His融合蛋白的含量及可溶性。

#### 2. 纯化重组 His 融合蛋白

- 1). 将 **His 蛋白纯化琼脂糖磁珠**充分混匀,使用移液器取适量的磁珠悬浮液,置于离心管中,磁性分离,弃上清。
- 2). 加入与上述磁珠悬浮液等体积的**结合/平衡缓冲液**,使用移液器反复吹打 5-10 次,磁性分离,弃上清,重复洗涤 2 次。
- 3). 将制备好的含有 His 融合蛋白澄清菌液加入到处理好的磁珠中,颠倒混匀。将离心管置于混匀仪上,室温孵育30min。(也可置于 2-8°C孵育 1h 或者过夜)
- 4). 结合结束后,将离心管置于磁力架上,磁性分离,弃上清(保留,以备检测)。向离心管中加入 2-5 倍悬浮液体积的洗涤液,移液器反复吹打 5-10次,然后磁性分离,用移液器吸取上清(保留,以备取样检测)。重复上述步骤3次。
- 5). 洗脱蛋白时可根据需要调整洗脱体积从而调整蛋白浓度的目的。建议用 2-5 倍柱体积的**洗脱缓冲液**加入到离心管中,移液器轻轻吹打 3-5 次,混匀,磁性分离,然后用移液器吸取上清液,即为目的蛋白。如有需要,可以重复上述步骤 1 次,以提高蛋白回收量。
- 6). SDS-PAGE 检测纯化效果,将 PAGE 胶取下放入塑料器皿中,加入适量蛋白快速染色液覆盖 PAGE 胶,然后至于摇床上摇动,染色时间 0.5h-2h 或过夜均可。
- 7) 染色结束后,PAGE 胶放置于水中保存并拍照。

#### 4. 磁珠再生

将装有磁珠的离心管中加入 1mL 洗脱缓冲液, 用移液器 反复吹打 3-5 次, 使磁珠重复悬浮, 然后置于磁力架, 磁性分离, 弃上清, 重复该操作 2 次。向离心管中加入 1mL 去离子水, 用移液器反复吹打 3-5 次, 使磁珠重复悬浮, 然后置于磁力架, 磁性分离, 弃上清, 重复该操作 2 次。最后加入 20%乙醇中, 使总体积等于初始悬浮液体积, 置于 2-8°C 保存。



## 5. 可能遇到的问题及解决办法

| 9. り形通到<br>问题       | 原因                           | 解决方案                                                                                           |
|---------------------|------------------------------|------------------------------------------------------------------------------------------------|
| 洗脱组分 中没有目的蛋白        | انستارون                     | 可以通过电泳检测裂解液分                                                                                   |
|                     | <br>  蛋白可能是包涵                | 析上清中是否含有目的蛋                                                                                    |
|                     | 体,上清无蛋白                      | 白, 包涵体蛋白需要按照包                                                                                  |
|                     | ,,, =,,,,,                   | M体蛋白的纯化方式。                                                                                     |
|                     | 表达量太低                        | 优化表达条件                                                                                         |
|                     | 目的蛋白结合比<br>较弱,在洗杂步<br>骤被洗下来了 | 提高 wash Buffer 的 pH,<br>或者降低咪唑浓度。                                                              |
|                     | 融合蛋白被蛋白酶降解                   | 在裂解步骤或洗涤步骤加入<br>适量的蛋白酶抑制剂,如<br>PMSF。                                                           |
|                     | 融合蛋白不能有 效地从磁珠上洗 脱下来          | 降低Elution Buffer的pH<br>值,或者增加Elution<br>Buffer中咪唑浓度<br>使用10-100mM EDTA溶液<br>剥离镍离子,同时得到目的<br>蛋白 |
|                     |                              |                                                                                                |
| 回收的重<br>组蛋白不<br>纯   | 样品中含有其他<br>的组氨酸标签蛋<br>白      | 通过调节 pH 值,或者咪唑浓度来优化洗杂条件。然后通过使用其他的纯化方式(如离子交换,疏水等)进一步纯化洗脱组分。                                     |
| 结合过程<br>中蛋白发<br>生沉淀 | 浓度太大                         | 适当稀释蛋白                                                                                         |
|                     | 蛋白发生聚集                       | 在样品和所有的缓冲液中添加稳定剂,如 0.1%的<br>Triton X-100 或者 Tween-<br>20。                                      |
|                     | 操作温度太低                       | 室温下进行上样。                                                                                       |